Posts Tagged ‘kiihtyvyys’

Laitteeseen integroitu loggeri

14.2.2016

Kuljetusolosuhteiden mittaamisesta olisi usein hyötyä, erityisesti tapauksissa, joissa kuljetuksessa tai varastoinnissa on tapahtunut jotain poikkeavaa. Perinteinen tapa kuljetuksen seurantaan ovat olleet passiiviset drop- ja tip’n’tell –anturit. Näiden kustannus on joitain euroja ja suurimpana puutteena on se, että ei tiedetä, milloin kiinnostava tapahtuma on tapahtunut.

Loggerien hintakehitys on mahdollistanut kalliimpien tuotteiden kuljetusten seurannan. Hyviä laitteita saa jo alle kahdella sadalla eurolla ja yksinkertaisempia kympeillä. Kalliimmissa laitteissa nämä hinnat eivät ole mahdottomia, mutta monitoroinnin voisi integroida suunnitteluvaiheessa suoraan laitteen piirilevylle. Näin kustannuksia ei tulisi kuin komponenteista jokunen euro. Hyötynä olisi mahdollisuus seurata jokaisen laitteen kohtaamaa rasitustasoa.

Useissa laitteissa on jonkinlainen pieni patteri, jolla laitteen muistia pidetään yllä. Samoin niissä on muistia, jota ei kuljetuksen aikana tarvita. Näin ollen mittaaminen tarvitsee vain kiihtyvyys- lämpötila- ja kosteusanturit piirilevylle ja vähän koodia. Tätä ideaa saa vapaasti hyödyntää!

 

Kiihtyvyyden mittaaminen

22.6.2014

Aiemmissa pudotustestejä käsittelevissä jutuissa olen pitänyt kiihtyvyyttä absoluuttisena arvona, joka saadaan helposti selville. Todellisuudessa kiihtyvyyden mittaamiseen liittyy käytettävästä taajuusalueesta johtuva epävarmuustekijä.

Pudotuksessa saatava kiihtyvyyskäppyrä muodostuu suuresta joukosta eri taajuuksilla olevia sinimuotoisia värähtelyjä, joiden yhteisvaikutus muodostaa mittaustuloksen. Pudotuksessa matalimman taajuuden käyrä on vaimentimen jousto. Tämän perustaajuuden lisäksi tuloksena on aina suuremmalla taajuudella olevia käyriä, jotka johtuvat mitattavan kohteen värähtelystä. Erityisesti suurilla peltipinnoilla näitä värähtelyjä on paljon ja suurille taajuuksille. Tämä johtaa epäselvään mittaustulokseen, mikäli koko mitattavissa oleva taajuusalue huomioidaan.

Mittauksen selventämiseksi joudutaan käyttämään alipäästösuodatinta, joka rajaa mitattavan taajuusalueen johonkin valittavaan rajaan. Samalla kuitenkin rajoitetaan mittauksesta saatavaa huippukiihtyvyyttä, sillä terävimmät piikit muodostuvat suurista taajuuksista. Suuret mittaustulokset eivät ole mittausvirhe, vaan mitattava kohde todellisuudessa kokee ne, joten suodattamalla saadaan tilanteesta todellisuutta ruusuisempi kuva.

Damage boundary curve-teorian mukaan pudotuksessa vaurioon tarvitaan kaksi tekijää, nopeus ja kiihtyvyys. Samaa teoriaa voidaan soveltaa pudotuksessa esiintyvään kertaluontoiseen rasitukseen. Suurella taajuudella esiintyvä suuri kiihtyvyys on sellainen, että se ei oletettavasti kohdista riittävästi energiaa värähtelyn amplitudin jäädessä pieneksi. Tämä on tietysti tapauskohtaista, eikä vaurioherkkyyttä taajuuden funktiona yleensä tiedetä.

Kiihtyvyyden ollessa testin läpäisyrajana pitää mittaustapa määrittää vaatimusmäärittelyvaiheessa. Pudotustestistandardit eivät näitä määritä, joten se on vapaasti valittavissa. Itse olen testeissä asettanut filtterin tyypillisesti 500 Hz luokkaan, mikä on perustunut ihan empiirisiin kokeiluihin. Suuremmilla taajuuksilla alkaa värähtelyt dominoimaan tulosta ja pienemmillä arvoilla käyrästä on tullut liian sileä. Alla olevasta kuvasta selviää, miten suodatus vaikuttaa tulokseen. Kuva on Matt Daumin Istaviews-julkaisusta 6/2014, jossa on mittausproblematiikkaa tarkasteltu tarkemminkin.

Mittaustulos erilaisilla alipäästösuodattimilla. Huippukiihtyvyys putoaa taajuuden pienentyessä. Kuva: Matt Daum / ISTA

Mittaustulos erilaisilla alipäästösuodattimilla. Huippukiihtyvyys putoaa taajuuden pienentyessä. Kuva: Matt Daum / ISTA

Kiihtyvyys pudotuksessa

8.6.2014

Kiihtyvyys on pudotuksessa tärkeä parametri, jonka perusteella pakkauksen suojausta voidaan arvioida. Pari viikkoa sitten kirjoitin damage boundary curve-teoriasta, jonka mukaan on olemassa jotkin tietyt kiihtyvyys- ja nopeusarvot, joiden alapuolella ei vaurioita synny. Valitettavasti näitä ei yleensä tunneta, jonka vuoksi tehdään sivistynyt arvaus suunnittelun lähtökohdaksi tai jopa testin hyväksyntäkriteeriksi. Arvoa valittaessa liioittelu johtaa ongelmiin.

Törmäyshetken nopeus on helposti laskettavissa pudotuskorkeuden perusteella. Kiihtyvyyden laskennallinen määrittely onkin vastaavasti erittäin vaikeaa tai mahdotonta, mutta jonkinlaista suuntaa saadaan ajattelemalla vaimennus täysin lineaariseksi ja laskemalla kiihtyvyys pysäytysmatkasta. Tässä tehdään kyllä raskaasti virhettä, koska vaimennus ei koskaan ole lineaarinen. Laskin taulukkoon eri korkeuksista syntyvän nopeuden osumahetkellä sekä pysäytysmatkan, mikäli kiihtyvyysrajaksi asetetaan 50 G tai 20 G.

Taulukko, josta selviää pudotuksen nopeudet sekä pysäytysmatkat 50 G ja 20 G tapauksissa. Itse tein.

Taulukko, josta selviää pudotuksen nopeudet sekä pysäytysmatkat 50 G ja 20 G tapauksissa. Itse tein.

Taulukosta havaitaan nojaamalla perusfysiikkaan, että nopeus kasvaa korkeuden neliöjuuressa. Kuitenkin energia kasvaa suoraan korkeuden funktiona, joten pienehkökin lisäys nopeudessa voi olla suojauksen kannalta ongelmallista. Tarkasteltaessa vaimennusmatkoja voidaan havaita, että kiihtyvyysvaatimuksen pudotessa matalaksi, kasvavat vaimennusmatkat runsaasti.

Jos päätetään mennä varovasti ja valitaan 1,2 m pudotus ja 20 G:tä, joudutaan vaimennusta tekemään niin, että pudotuksessa joustoa tulee 6 cm. Jos tuote kuitenkin kestää 50G ja pudotusvaatimus olisikin 1 m, tulee vaimennusta kolminkertainen määrä tarpeeseen nähden. 6 cm jousto on niin suuri, että saatetaan jopa joutua tekemään vaimennus kahdessa osassa, sillä yhdellä vaimentimella ja keveällä tuotteella tuollaisen toteuttaminen on hankalaa.

 

Vauriomekanismit pudotuksessa

4.5.2014

Pudotuksessa tuotteen vaurioitumiseen vaikuttavat sekä kiihtyvyys että nopeuden muutos. Kiihtyvyyteen vaikuttavat iskuhetken nopeus ja joustomatka. Nopeuden muutokseen pudotuksen tapauksessa vaikuttaa lähinnä pudotuskorkeus, joka määrittää nopeuden iskuhetkellä. Nopeuden muutoksen voi ymmärtää myös energiamäärän vapautumisena törmäyksessä.

Jokaisella tuotteella on olemassa jokin tietty miniminopeus, jonka alapuolella ei vaurioita synny riippumatta kiihtyvyydestä. Erittäin suuria kiihtyvyyksiä saa kohdistettua tuotteelle esimerkiksi pudottamalla sen kovalle pinnalle. On helposti ymmärrettävissä, että aivan pienellä pudotusnopeudella ei vaurioita synny, sillä putoavan kappaleen energia on liian pieni vaurioitumiseen. Vastaavasti nopeus saa olla erittäin suuri, jos riittävällä vaimennuksella rajoitetaan kiihtyvyys pieneksi.  Pakkauksia suunniteltaessa ajatellaan yleensä kiihtyvyyden olevan rajoittava tekijä, mutta todellisuudessa erityisesti suurissa kappaleissa näin ei aina ole.

Tuotteelle ja sen yksittäisille komponenteille on mahdollista määrittää käyrä, joka kuvaa vaurioitumisrajan kiihtyvyyden ja nopeuden funktiona. Tällainen käyrä saadaan, kun tuotetta rasitetaan tärypöydällä erilaisilla parametreilla ja tarkastellaan syntyviä vaurioita. Teoreettisestikin tämän pystynee simuloinnilla selvittämään, mutta omalle kohdalle ei tällaista hanketta ole vielä osunut.

Pakkaussuunnittelun kannalta käyrässä on kaksi kiinnostavaa aluetta:

  1. Pieni nopeuden muutos. Mikäli pudotustestivaatimuksen asettama nopeuden muutos on niin pieni, että vaurioita ei kiihtyvyydestä riippumatta synny, ei tuotetta tarvitse suojata pudotuksia vastaan.
  2. Matala kiihtyvyys. Nopeuden ollessa niin suuri, että vaurioita voi syntyä, saadaan käyrästä luettua suurin sallittu kiihtyvyys, jota voidaan käyttää vaimentimien suunnitteluparametrina.

Pakkaussuunnittelua joudutaan valitettavasti tekemään lähes aina tilanteessa, jossa käyrä ei ole tunnettu. Näitä selvitetään yleensä vasta sitten, kun tiedetään tuotteen vaurioituvan poikkeuksellisen usein toimituksissa. Tällöin ollaan aina käyrällä sillä alueella, että nopeuden muutos on tarpeeksi suuri, jolloin haetaan lähinnä tietoa kiihtyvyysrajoista. Pakkaussuunnittelussa yleisempää on, että annetaan suunnitteluun lähtökohdaksi jokin kiihtyvyys, tyypillisesti 50 G, ja toteutetaan vaimennus tämän perusteella.

Arvioituun kiihtyvyysrajaan suunnittelun perustaminen johtaa toisinaan ylipakkaamiseen. Vaurioitumiskäyrän kertoo, että vaurio on kahden muuttujan funktio. Suunniteltaessa vaimennusta kiihtyvyyteen perustuen saattaa jäädä kokonaan huomioimatta, että nopeuden muutos on testissä sellaisella alueella, että tuote ei vaurioituisi kuitenkaan.

Damage boundary curve wikimedian mukaan. Vauriokäyrä on kuvattu mustalla.

Kuljetuksen monitorointi

28.11.2010

Pakkauksen ja tuotteen kohtaaman käsittelyn monitorointi auttaa paljastamaan logistiikkaketjusta ne kohdat, joissa vauriot tapahtuvat. Mittauksella saadaan myös tietoa kuljetuksenaikaisista rasituksista vaatimusmäärittelyä varten. Kirjoittelin jokunen kuukausi sitten loggereista. Silloin tutkailin ShockWatch-laitetta, josta ei ollut omakohtaista kokemusta.

Hiljattain sain käsiini Tinytag TGP-0610-nimisen iskuja tallentavan loggerin. Laiteelle voidaan määrittää aikaintervalli, jolla dataa tallennetaan. Jos valitaan vaikkapa 1 minuutti, tallentaa laite minuutin välein edellisen minuutin suurimman kiihtyvyyden. Skaala tässä laitteessa on 0-100g ja laite mittaa yhtä akselia. Ohjelmisto on erittäin helppokäyttöinen. Tällä laitteella ei myöskään käy niin, että mittauksia tulee heti kättelyssä niin paljon, että muisti täytyy. Muistiin mahtuu 16000 näytettä, joten aikaintervallilla voidaan määrittää mittauksen kesto.

Hintatasoltaan tämä on varsin huokea. Loggeri ja ohjelmisto irtoaa jokusella satasella. Tonnilla saa jo monta loggeria. Näin ollen näitä voi käyttää melko huoletta, sillä kadonneet laitteet eivät aiheuta merkittävää taloudellista kuormitusta. Ensituntumaksi jäi, että laite soveltuu mitä mainioimmin iskujen seuraamiseen. Helppokäyttöisyys ja pieni koko tekevät seurannan järjestelyistä vaivatonta.


%d bloggaajaa tykkää tästä: